新海研三號 CTD 及附掛探針定期率定率定日期:2021年10月25日到29日

技術員: 江秉峵

技術員指導老師: 黃蔚人、林玉詩

一、前言

本船所屬之CTD及附掛探針雖為國際大廠 Sea-Bird Scientific 所 推出之產品,經過歷年的使用,學界對其測量的精度準度皆有一定信 心,但考慮儀器隨時間使用下,電子訊號值會產生飄移,以及不同的 儀器有不同的校正方法;因此,除了每年定時將校正後的儀器更換上 船,並將使用過一年後的儀器拆下並送回原廠進行校正外,在航次條 件允許的狀況下,技術員每年會進行4次(約每季)的率定實驗,率 定結果可供出海人員參考使用。

本船研究船上的 CTD 系統是採用美國 Sea-Bird Scientific (簡稱 SBE) 所製造的 SBE 911+,是由 CTD 主體 SBE 9 壓力探針及 SBE 11+ V2 控制裝置 (Deck Unit) 所組成。SBE9 壓力探針包含 8 個電子通道,用以供電、資料傳輸以及附加其他探針像是海水馬達、溫度探針、鹽度探針、溶氧探針及其他光學探針等,隨船收集剖面上各種海洋數據。 SBE 11+ V2 控制裝置為水上端,負責供給水下端探針電源,並與船上電腦連接,扮演接收資料及控制水下端 CTD 及採水瓶的開啟及關閉的腳色。

溫度探針量用以測海水溫度;鹽度探針藉由測量海水導電度進而換算成的鹽度資料;溶氧探針是利用電極法,透過不同溶氧濃度對電極造成不同的電位差,並將電壓值換算成水中氧氣含量;透光度探針是透過光經固定長度的光通道,受到海水中的顆粒體影響而分散、吸收、衍射、折射等作用衰減,計算得到穿透度,為量測海水總懸浮顆粒的有效工具;螢光度探針 (fluorometer) 可以得到水體中的螢光資料,該資料若經以現場過濾並實測水體中的葉綠素 a 濃度校正,可推估海洋中浮游植物數量。

二、採樣

貴儀中心利用新海研 3 號 NOR3-0070 航次,於 2021 年 10 月 28 日在南海北部的兩個測站 (A 站位,21°57.5′N,119°34.9′E,水深 2463 公尺;B站位,22°24.1′N,120°22.1′E,水深 768 公尺)採樣,位置如圖 1。

由於本率定航次與其他實驗室共同執行,考慮 A 站位雖然深度較深,但由於離岸較遠,螢光值變化不大,僅採集鹽度樣本;溶氧及螢光則選擇在離岸較近且測值變化較大的 B 站位進行率定採樣。每個站位採集深度列於表 1。海水及濾紙樣本均帶回實驗室進行分析,並與探針資料比對,本次航次所使用之 CTD 及附掛探針如表 2。

圖 1、本次率定實驗採樣點 (A 站位, 21°57.5'N, 119°34.9'E, 水深 2463 米; B 站位, 22°24.1'N, 120°22.1'E, 水深 768 米)

表 1、本次率定採樣深度 (單位:公尺)

A 站	B站
(水深 2463M)	(水深 768M)
20	45
40	60
60	70
80	80
100	90
200	100
400	
600	

表 2、本次航次所使用之 CTD 及附掛探針

探針種類	型號	序號	最近一次原廠校正日期
CTD主體	SBE 9	1443	2020-11-11
温度	SBE 3P	6553	2020-11-05
導電度(鹽度)	SBE 4C	5014	2020-10-27
溶氧	SBE 43	4048	2020-10-31
螢光	WET Labs	6497	2020-09-10
	ECO-AFL/FL		
透光	透光 WET Labs		2020-10-01
	C-Star		

三、實驗室分析方法

- 1. 鹽度率定:現場採集海水裝於鹽度瓶中,帶回實驗室進行鹽度測量前,開啟室內空調,確認環境溫度為 25±1℃,開啟鹽度分析儀,設定機器內水溫在 25℃,並將樣本及標準海水至於室內等待至少半小時,待樣本溫度穩定在 25±1℃後再進行實驗,在恆溫的狀況下用Guildline 公司出品的 Autosal 8400B 實驗室鹽度儀測量標準海水(IAPSO standard seawater P-series) 及海水樣本的導電度比值後,利用Lewis and Perkin (1978) 提出的鹽度計算公式進行換算,再與該航次CTD資料比對。
- 2. 螢光值率定:以平均孔徑約 0.7 μm 的 GFF 玻璃纖維濾紙利用抽氣過濾設備,過濾現場水樣 2 公升,並將濾紙保存於-80 ℃冷凍庫後,帶回實驗室進行分析。根據 Aminot & Rey (2000)及 Welschmeyer (1994) 所發表的葉綠素分析方法,樣本前處理及分析時,會保持在室內無光的環境進行,確保濾紙上的葉綠素不會受到光照的影響。將濾紙置於 90%丙酮溶液中在室溫以震盪機震盪 30 分鐘後,冰回 4℃冰箱萃取至少 8 小時,再置入低溫離心機在 4℃以 4000 r.p.m 離心約 2 分鐘後得到葉綠素 a 萃取液,萃取液再以螢光儀測得葉綠素 a 的螢光值,之後在萃取液中再加入 1 N 鹽酸酸化樣本,以螢光儀測得脫鎂色素的螢光值。最後依測得葉綠素標準品 (SIGMA Chlorophyll a from Anacystis nidulans algae;以分光光度計校正濃度)製備之螢光值檢量線求得葉綠素 a 及脫鎂色素濃度,再與該航次 CTD 資料比對。

文獻中葉綠素a濃度有不同計算方式:

(1) 排除脫鎂色素貢獻之葉綠素 a 濃度計算公式 (公式與代號參考 Aminot & Rey, 2000):

Chlorophyll a= $K^*(F_m/(F_m-1))^*V_e^*(F_o-F_a)/V_f$ Pheopigment a= $K^*(F_m/(F_m-1))^*V_e^*((F_m^*F_a)-F_o)/V_f$

(2) 假設脫鎂色素影響可忽略之葉綠素 a 濃度計算公式 (公式與

代號參考經濟部標準檢驗局葉綠素 a 測定方法):

Chlorophyll a = $[a \times (F_o - F_{bk}) + b \times (F_o - F_{bk})^2]/D$

3. 溶氧率定:將海水取樣至 65 ml BOD 瓶中,過程中確保不會產生氣泡,並依據 Pai et al. (1998) 所發展出來的疊氮修正希巴辣光度測氧法 (Shibala colorimetry),在海上進行醃氧,回到岸上後,在實驗室加酸進行釋碘反應,溶氧樣本於測定前後,皆有用紅外線測溫槍量測環境溫度,確認環境溫度為 25 ±1 °C,且將樣本及藥品置於室內等待至少半小時,待樣本溫度穩定在 25 ±1°C 後再進行分析。最後以矽新科技的 SH-U880 分光光度計測量,配合標準品 (Titrisol KIO₃) 做出的檢量線換算出各樣品的溶氧值,再與該航次 CTD 資料比對。

四、率定結果

圖 2 為 CTD 測得鹽度、螢光及溶氧分別對深度圖,鹽度、螢光及透光探針上收集下放資料皆相當吻合,顯示探針的再現性良好。

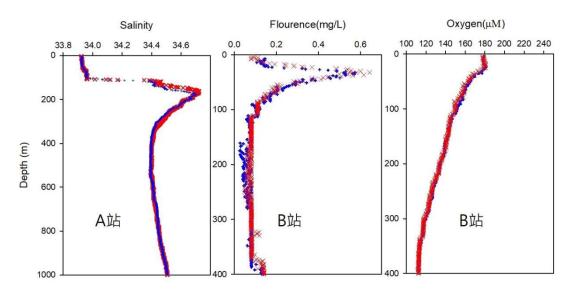


圖 2、本次率定實驗 CTD 資料,藍色點為 CTD 下放資料,紅色點為 CTD 上收資料

4.1. 鹽度

CTD 鹽度數據及實驗室測量結果如附表 1,圖 3a 則是兩種鹽度數據相互作圖,原始數據匯整於 Excel 檔。率定數據對水深變化遵循 CTD 剖面所呈現的垂直趨勢,率定鹽度範圍為 33.908 至 34.607,兩者具有良好的相關性 (R²=0.9891),斜率為 0.9267±0.0397,截距為 2.5067±1.3572,殘差平方和 (residual sum of squares, RSS) 為 0.0056。

4.2. 螢光

CTD 螢光數據及實驗室葉綠素 a 測量結果如附表 2,圖 3b 及圖 3c 則是兩種螢光數據相互作圖,原始數據匯整於 Excel 檔。率定數據 對水深變化遵循 CTD 剖面所呈現的垂直趨勢。排除脫鎂色素貢獻的

情況下,率定範圍為 0.11 至 0.60 $\mu g/L$,實測與探針測值具有良好的相關性 $(R^2=0.9229)$,斜率為 0.8771 ± 0.1108 ,截距為 0.0085 ± 0.0442 , RSS 為 0.0108;在假設脫鎂色素影響可忽略的情況下,率定範圍為 0.15 至 0.69 $\mu g/L$,兩者具有良好的相關性 $(R^2=0.9285)$,斜率為 0.9638 ± 0.1337 ,截距為 0.0554 ± 0.0533 , RSS 為 0.0157。

4.3. 溶氧

CTD 鹽度數據及實驗室測量結果如附表 3,圖 3d 則是兩種溶氧數據相互作圖,原始數據匯整於 Excel 檔。率定數據對水深變化遵循 CTD 剖面所呈現的垂直趨勢。率定溶氧值範圍為 158.5 至 180.6 μ M,兩者具有良好的相關性 (R^2 =0.976),斜率為 1.0565 ± 0.0816 ,截距為 -4.1063 ± 13.3439 , RSS 為 8.5991。

附表 4 匯整本次率定相關資料與結果。

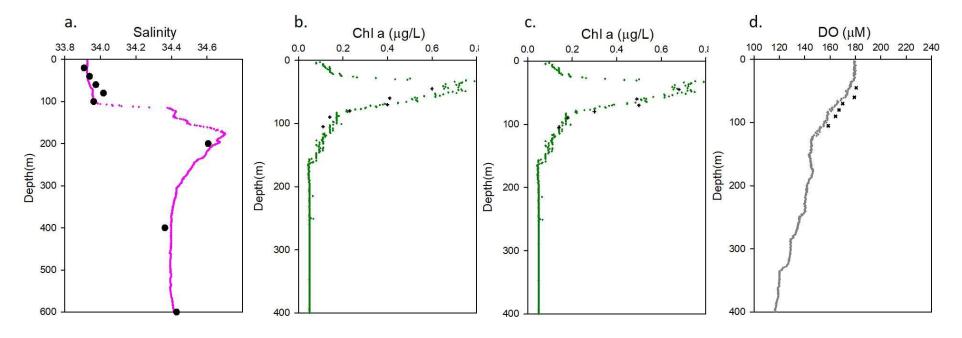


圖 3、(a) CTD 鹽度資料及實驗室實測資料對深度作圖,紫色點為 CTD 資料,黑色圓點為實驗室實測資料。(b) CTD 螢光資料及實驗室實測資料對深度作圖,綠色點為 CTD 資料,黑色十字點為實驗室實測資料 (排除脫鎂色素貢獻)。 (c) CTD 螢光資料及實驗室實測資料對深度作圖,綠色點為 CTD 資料,黑色十字點為實驗室實測資料 (假設脫鎂色素影響可忽略)。(d) CTD 溶氧資料及實驗室實測資料對深度作圖,灰色點為 CTD 資料,黑色 X 點為實驗室實測資料。

五、參考資料

- Aminot, A., & Rey, F. (2000). Standard procedure for the determination of chlorophyll a by spectroscopic methods. International Council for the Exploration of the Sea, 112.
- Welschmeyer, N. A. (1994). Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and oceanography, 39(8), 1985-1992. https://doi.org/10.4319/lo.1994.39.8.1985
- Lewis, E. L., & Perkin, R. G. (1978). Salinity: Its definition and calculation. Journal of Geophysical Research: Oceans, 83(C1), 466-478. https://doi.org/10.1029/JC083iC01p00466
- Pai, S. C., Gong, G. C., & Liu, K. K. (1993). Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine.

 Marine Chemistry, 41(4), 343-351.

 https://doi.org/10.1016/0304-4203(93)90266-Q
- 經濟部標準檢驗局,2008。深層海水檢驗法-葉綠素 a 之測定。CNS 總號:15091-30,類號:N7001-30

六、附錄

附表 1、鹽度數據

	•	•
深度(M)	探針數值	實驗室測量數值
20	33.926	33.907
40	33.929	33.938
60	33.939	33.973
80	33.956	34.016
100	33.959	33.961
200	34.658	34.606
400	34.399	34.362
600	34.412	34.428

附表2、葉綠素數據

		排除脫鎂色素貢獻	忽略脫鎂色素影響
深度	探針數值	實驗室測量數值	實驗室測量數值
(M)	(µg/L)	$(\mu g/L)$	(µg/L)
45	0.6551	0.60	0.68
60	0.5332	0.41	0.50
70	0.3792	0.40	0.50
80	0.2199	0.23	0.30
90	0.1718	0.14	0.18
100	0.1413	0.11	0.14

附表 3、溶氧數據

深度	探針數值	實驗室測量數值
(M)	(µM)	(μM)
45	175.6	180.6
60	172.2	179.2
70	165.8	170.0
80	162.0	167.1
90	157.7	164.3
105	155.2	158.6

附表四、探針率定總結

參數	探針種類	探針	最近校正	率定	站位	站位	站位	率定樣	斜率	斜率	截距	截距	\mathbb{R}^2	RSS	Note
		序號	日期	日期	經度	緯度	水深	本數	mean	STD	mean	STD			
					(°E)	(°N)	(m)								
鹽度	SBE 4C	5014	2020-11-11	2021-10-28	119.582	21.958	2463	8	0.9267	0.0397	2.5067	1.3572	0.9891	0.0056	
螢光	WET Labs	6497	2020-11-05	2021-10-28	120.368	22.402	768	6	0.8771	0.1108	0.0085	0.0442	0.9400	0.0108	排除脫鎂色素
	ECO-AFL/FL														貢獻
螢光	WET Labs	6497	2020-10-27	2021-10-28	120.368	22.402	768	6	0.9638	0.1337	0.0554	0.0533	0.9285	0.0157	假設脫鎂色素
	ECO-AFL/FL														影響可忽略
溶氧	SBE 43	4048	2020-10-31	2021-10-28	120.368	22.402	768	6	1.0565	0.0816	-4.1063	13.3439	0.9760	8.5991	