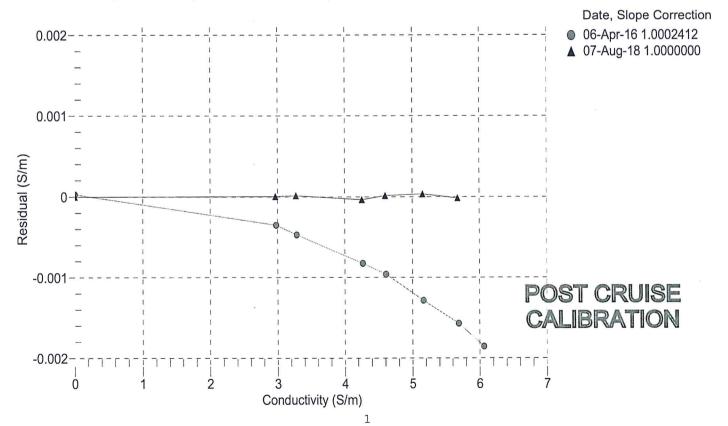
Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 3361 CALIBRATION DATE: 07-Aug-18

SBE 21 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 3.31705537e-005


BATH TEMP	BATH SAL	BATH COND	INSTRUMENT	INSTRUMENT	RESIDUAL
(° C)	(PSU)	(S/m)	OUTPUT (kHz)	COND (S/m)	(S/m)
22.0000	0.0000	0.0000	2.91399	0.00000	0.00000
1.0000	34.7143	2.96808	8.27408	2.96808	0.00000
4.5000	34.6947	3.27438	8.63900	3.27439	0.00001
14.9999	34.6525	4.25363	9.71277	4.25359	-0.00004
18.5000	34.6434	4.59790	10.06271	4.59791	0.00001
24.0000	34.6337	5.15446	10.60351	5.15449	0.00003
29.0000	34.6279	5.67492	11.08481	5.67491	-0.00002
32.5000	34.6233	6.04613	11.41529	6.04595	-0.00018

f = Instrument Output (kHz)

 $t = temperature (°C); p = pressure (decibars); <math>\delta = CTcor; \epsilon = CPcor;$

Conductivity $(S/m) = (g + h * f^2 + i * f^3 + j * f^4)/10 (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

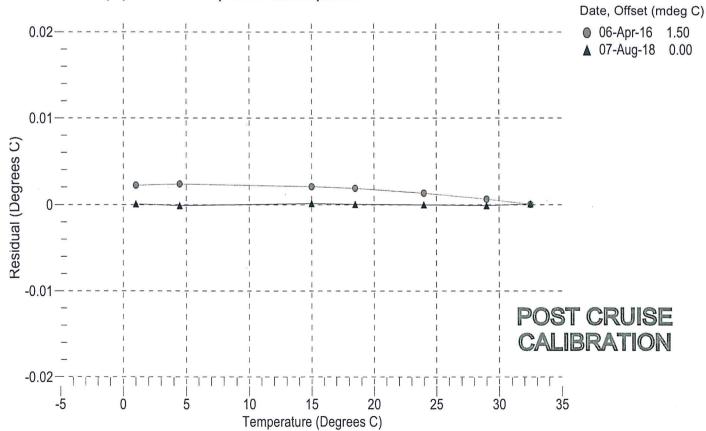
Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 3361 CALIBRATION DATE: 07-Aug-18

SBE 21 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

COEFFICIENTS:

g = 4.21679908e-003 h = 6.10951946e-004 i = 1.74661569e-005 j = 1.00632356e-006


f0 = 1000.0

BATH TEMP (° C)	INSTRUMENT OUTPUT (Hz)	INST TEMP (° C)	RESIDUAL (° C)
1.0000	2602.058	1.0001	0.00008
4.5000	2817.053	4.4999	-0.00015
14.9999	3539.643	15.0000	0.00013
18.5000	3807.643	18.5000	0.00001
24.0000	4257.621	24.0000	-0.00004
29.0000	4698.316	28.9999	-0.00012
32.5000	5025.326	32.5001	0.00009

f = Instrument Output (Hz)

Temperature ITS-90 (°C) = $1/\{g + h[ln(f0/f)] + i[ln^2(f0/f)] + j[ln^3(f0/f)]\} - 273.15$

Residual (°C) = instrument temperature - bath temperature

PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-5650 Fax (541) 929-5277 www.sea-birdscientific.com

Chlorophyll WETStar Post-Deployment Characterization

Date: September 7, 2018 S/N: WSCHL-1402

Chlorophyll concentration expressed in µg/l can be derived using the equation:

 $CHL(\mu g/I) = Scale Factor \times (Output - Clean Water Offset)$

Analog output

Clean Water Offset (CWO) 0.059 VScale Factor (SF) 10.1 µg/l/V

Maximum Output 5.55 V Resolution 0.37 mV Ambient Characterization Temperature 22 \pm 1°C

Current Draw 30 mA @ 12V (typical)

12-hour Stability 0.36 mV/hr Temperature Stability, 25–2 °C 0.23 mV/°C

Range	
15 µg/l	0
50 μg/l	Χ
150 µg/l	0

Definitions:

CWO: Clean Water Offset value obtained using pure filtered de-ionized water.

SF: Scale Factor is used to convert the fluorescence response of the instrument into chlorophyll-a concentration. Scale Factor is determined at WET Labs during a cross calibration using a liquid fluorescent standard and a reference fluorometer whose chlorophyll fluorescence response has been characterized in a laboratory using a mono-species lab culture of *Thalassiosira weissflogii* phytoplankton.

Maximum Output: Maximum signal output of the fluorometer.

Resolution: Standard deviation of 1 minute of clean water data, sampled once per second. **Ambient Characterization Temperature:** Room temperature at time of characterization.

Current Draw: The amount of current the instrument uses for operation.

12-hour Stability: Deviation of output averaged over 12 hours.

Temperature Stability: Measured output variation per degree.

(541) 929-5650 Fax (541) 929-5277 www.sea-birdscientific.com

C-Star Calibration

Date	August 31, 2018	S/N#	CST-1427PR	P	athlength 25	
V _d V _{air}			Analog output 0.004 V 4.933 V	Digital output 0 counts 16183 counts		
V _{ref}			4.702 V	15424 counts		
	erature of calibration wa				23.7 ℃ 22.9 ℃	

Relationship of transmittance (Tr) to beam attenuation coefficient (c), and pathlength (x, in meters): $Tr = e^{-cx}$

To determine beam transmittance: $Tr = (V_{sig} - V_{dark}) / (V_{ref} - V_{dark})$

To determine beam attenuation coefficient: c = -1/x * In (Tr)

V_d Meter output with the beam blocked. This is the offset.

V_{air} Meter output in air with a clear beam path.

V_{ref} Meter output with clean water in the path.

Temperature of calibration water: temperature of clean water used to obtain V_{ref}.

Ambient temperature: meter temperature in air during the calibration.

V_{sig} Measured signal output of meter.